Činjenice i radni listovi o višeznamenkastim aritmetičkim operacijama

U ovoj ćemo lekciji koristiti vaše razumijevanje vrijednosti mjesta i svojstva operacija izvoditi višeznamenkaste aritmetičke jednadžbe . Osim toga, tečno ćemo zbrajati i oduzimati cijele brojeve, množiti višeznamenkaste brojeve s jednoznamenkastim brojem i pronalaziti količnike i ostatke cijelih brojeva s do četveroznamenkaste dividende i jednoznamenkastih djelitelja.

Pogledajte donju datoteku činjenica za više informacija o višeznamenkastim aritmetičkim operacijama, a možete i preuzeti naš radni list Višeznamenkastih aritmetičkih operacija na 37 stranica koji ćete koristiti u učionici ili kućnom okruženju.



Ključne činjenice i informacije

MJESTO VRIJEDNOST Djelomične sume

  • Jedan od načina za rješavanje zbroja dva velika broja jest korištenje djelomičnih zbrojeva.
  • U ovom ćemo odjeljku pokušati razumjeti kako vrijednost mjesta djelomične svote rade.
  • Djelomični zbrojevi vrijednosti mjesta metoda je razbijanja brojeva u prošireni oblik i njihovo dodavanje poput vrijednosti mjesta.
  • Koristimo jednadžbu zbrajanja koja je navedena u nastavku.
    • 729 + 243 =?


  • Kako proširiti brojeve?
    • 700 + 20 + 9
    • 200 + 40 + 3


  • Imajte na umu da već imamo brojeve koji drže znak stotine vrijednost mjesta, desetak mjesta vrijednost i one mjesta vrijednost. Sada ih možemo dodavati prema mjesnim vrijednostima.
    • 700 + 200 = 900
    • 20 + 40 = 60
    • 9 + 3 = 12


DODAVANJE ČETVOROZNAMENJENIH BROJEVA

  • Prvo zbrajamo znamenke na jednom mjestu. Zatim dodamo desetke.
  • Dalje, radite na stotinama mjesta, a zatim na tisućama mjesta.

ODUZIMANJE ČETVOROZNAMENITIH BROJEVA

  • Oduzimanje četveroznamenkastih brojeva jednako je kao i oduzimanje manjih brojeva.

UZORCI ZA MNOŽENJE PREKO MJESNIH VRIJEDNOSTI

    • 10 x 6 =?


    • 100 x 6 =?
    • 1000 x 6 =?
  • Svi ovi brojevi pomnoženi sa 6 počinju s 1. Broj nula se povećava za 1 u svakoj jednadžbi. To znači da se vrijednost mjesta 1 povećava u svakoj jednadžbi.
    • 10 - Vrijednost 1 je 1 deset.


    • 100 - Vrijednost 1 je sto.
    • 1000 - Vrijednost 1 je 1 tisuću.
  • Prevodeći prvu jednadžbu, postalo bi:
    • 1 deset x 6
    • 1 deset x 6 = 6 desetica
    • 10 x 6 = 60
  • Za drugu jednadžbu to bi bilo:
    • Sto x 6.
    • Sto x 6 = 6 stotina
    • 100 x 6 = 600
  • Možete li shvatiti obrazac za treću jednadžbu?
  • Kako se vrijednost mjesta broja koji se množi povećava, povećava se i broj nula. Kada dovršavate obrasce množenja, uvijek tražite pravilo koje se temelji na mjesnim vrijednostima brojeva.

TROIZMENIČNO MNENJE MNOŽENJA

  • Kada množite troznamenkasti broj s jednoznamenkastim, pomnožite jednoznamenkasti broj sa svakom od znamenki u troznamenkastom broju, počevši s desne strane ili s mjesta s jednim brojem.
  • Pogledajmo ovaj primjer.
    • 310 x 2 =?
  • Prvo što morate učiniti je rasporediti brojeve u obliku stupaca.
  • Na vrhu napišite troznamenkasti broj, a na dnu jednoznamenkasti.
  • Obavezno poravnajte 2 s 0. Obje znamenke moraju biti na jednom mjestu ili na desnoj strani.
  • Prvo pomnožite 0 i 2. Napišimo njihov proizvod na jedno mjesto.
  • Zatim pomnožite 1 i 2, a zatim odgovor upišite na mjesto desetaka.
  • Na kraju pomnožite 3 i 2. Na stotine mjesta napišite 6.

ČETVOROZNALNA JEDNOCIFRENKA PODJELA

  • Riješimo količnik 8.356 i 4.
  • Prvo, dogovorimo problem u obliku dugog dijeljenja.
  • Pogledajte prvu znamenku slijeva. Koliko 4 možete dobiti od 8?
  • Zapisujemo 2 na vrh, kao količnik, a umnožak 2 i 4 ispod 8.
  • Zatim oduzmemo ovaj proizvod od znamenke u dividendi (8) da bismo dobili ostatak.
  • Spustimo sljedeću znamenku, 3. Koliko 4 možete dobiti iz 3?
  • Nijedno zar ne? Dakle, pišemo 0 na vrhu, kao količnik.
  • Kada je količnik za bilo koju znamenku u dugom dijeljenju 0, dijelimo sljedeću znamenku zajedno s njom.
  • Smanjimo sljedeću znamenku, 5. Podijelimo 35 sa 4. Koliko 4 možete dobiti od 35?
  • Na vrhu napišemo 8, kao količnik, a umnožak 8 i 4 ispod 35. Zatim od 35 oduzmimo njihov proizvod 32.
  • Na kraju, spustimo zadnju znamenku, 6. Budući da imamo ostatak 3 od razlike 35 i 32, kombinirat ćemo 3 sa 6 i podijeliti ih s 4.
  • 36 podijeljeno s 4 je 9. Na vrh napišemo 9, kao količnik, a umnožak 9 i 4 ispod 36. Zatim oduzimamo.
  • Količnik kada se 8.356 podijeli s 4 je 2.089, a ostatak 0.

Višeznamenkasti radni listovi za aritmetičke operacije

Ovo je fantastičan paket koji uključuje sve što trebate znati o višeznamenkastim aritmetičkim operacijama na 37 dubinskih stranica. Ovi su gotovi za uporabu višeznamenkasti računski radni listovi koji su savršeni za podučavanje učenika o razumijevanju vrijednosti mjesta i svojstvima operacija za izvođenje višeznamenkastih aritmetičkih jednadžbi. Osim toga, tečno ćemo zbrajati i oduzimati cijele brojeve, množiti višeznamenkaste brojeve s jednoznamenkastim brojem i pronalaziti količnike i ostatke cijelih brojeva s do četveroznamenkaste dividende i jednoznamenkastih djelitelja.



Potpuni popis uključenih radnih listova

  • Plan učenja
  • Višeznamenkaste aritmetičke operacije
  • Pronađite zbroj
  • Pronađite razliku
  • Pronađite proizvod
  • Pronađite količnik
  • Količnik i Ostaci
  • Množenje višekratnika
  • Nedostaje oduzimanje
  • Nedostaju višestruki
  • Napišite jednadžbu
  • Problemi s riječima

Link / citiraj ovu stranicu

Ako se na bilo kojem od sadržaja na ovoj stranici pozivate na vlastitu web stranicu, upotrijebite donji kod da biste ovu stranicu citirali kao izvorni izvor.

Činjenice i radni listovi o višecifrenim aritmetičkim operacijama: https://diocese-evora.pt - KidsKonnect, 1. lipnja 2020

Veza će se pojaviti kao Činjenice i radni listovi o višecifrenim aritmetičkim operacijama: https://diocese-evora.pt - KidsKonnect, 1. lipnja 2020

Koristite s bilo kojim nastavnim planom i programom

Ovi su radni listovi posebno dizajnirani za upotrebu s bilo kojim međunarodnim kurikulumom. Te radne listove možete koristiti takvi kakvi jesu ili ih urediti pomoću Google prezentacija kako biste ih učinili specifičnijima za vaše vlastite razine sposobnosti učenika i standarde kurikuluma.